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A. Introduction 

Cellular growth control takes a delicate 
balance between stimulatory and inhibi­
tory signals. Much previous research has 
focused on the identification of genes 
which encode for stimulatory signals. 
Genes that encode for inhibitory signals 
may be more difficult to analyze [1]. T­
cell gene products are capable of inhibi­
tion of hematopoiesis in vitro and possi­
bly in vivo [2-6]. The mechanisms 
regUlating the inhibitory hematopoietic 
T-cell program are not well understood. 

We have previously shown that trig­
gering the T-cell antigen receptor associ­
ated epitope CD3 induces the p55 chain 
of the interleukin-2 (IL2) receptor on 
bone marrow T cells and renders mar­
row T cells responsive to low concentra­
tions of IL2 [7]. In addition, we have 
demonstrated that IL2 inhibits the 
growth of marrow early erythroid pro­
genitor cells (BFU-E) in the presence of 
IL2 receptor-positive T cells, and that in­
terferon-y (IF-y) is an obligatory media­
tor of IL2-induced inhibition of BFU-E 
[4, 7]. We have also described a receptor­
specific inhibition of myelopoiesis by IL2 
which is mediated only in part by IF-y [8]. 
Taken together, we have demonstrated a 
model for molecular regulation of hema­
topoiesis governed by an array of hu­
moral and cellular signals, termed the 
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lymphokine cascade. We have now exam­
ined the role of the early T-cell antigen 
CD2 in control of hematopoiesis by this 
lymphokine cascade. 

CD2 has been identified for a long 
time as the receptor mediating sheep 
erythrocyte binding to T cells [9]. Later 
studies revealed that CD2 can serve as a 
receptor for a non-antigen-restricted 
pathway of T cell activation [10]. Lym­
phocyte function antigen 3 (LFA-3) has 
been identified as a natural ligand for 
CD2 [11, 12] and may induce T-cell acti­
vation in conjunction with additional ac­
tivation signals [13]. LFA-3 is present on 
various cell types, including T -cells and 
mature red blood cells [14]. CD2-block­
ing monoclonal antibodies have been 
shown to inhibit binding of purified 
LFA-3 to CD2 [10-16]. Recent data sug­
gest that interactions between CD2 and 
the antigen receptor may be essential for 
T-cell activation [17 -19]. We utilized the 
CD2 antibody Leu 5b, which blocks a 
binding site for LFA-3 to examine the 
role of CD2 in IL2-induced inhibition of 
hematopoietic progenitors. 

B. Induction of IL2 Receptors by CD2 

IL2 receptors (p55) were induced on pe­
ripheral blood or marrow T cells via trig­
gering of the antigen receptor associated 
CD3 epitope, as previously described [4, 
8]. In brief, T cells were preincubated 
with CD2-blocking antibody before acti­
vation with CD3 antibody and subse­
quently cultured for 3-6 days in the pres­
ence of IL2. Antibody incubations were 
performed with T-cell pellets to facilitate 
interaction between LFA-3 and CD2. 
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42% of the CD3-triggered T cells ex- 
pressed p55 at day 3, and 53% expressed 
p55 at day 6 (Fig. 1). CD2 blockade 
caused a 75% inhibition of p55 expres- 
sion at day 3 as compared to preincuba- 
tion with isotype control CD5 antibody 
and a 65% inhibition of p55 expression 
at day 6. Preincubation with isotype con- 
trol CD5 antibody did not affect CD3- 
mediated p55 expression. CD2 blockade 
had no effect on binding of either trigger- 
ing antibody to CD3 or IL2 receptor an- 
tibody to p55. 

Next we asked whether regulation of 
p55 IL2 receptor expression by CD2 is 
associated with regulation of p55 gene 
expression. RNA was extracted by phe- 
nol extraction in the presence of vanadyl 
ribonucleotides [21] or by a cesium chlo- 
ridelguanidium isothiocyanate gradient 
[22] from immunopurified T cells or 
monocyte-depleted mononuclear cells 
(>90% T cells by three-stage indirect 
immunofluorescence with CD5 anti- 
body). Following gel electrophoresis T- 
cell RNA was subjected to a modified 
Northern transfer employing Nylon 
membranes. Highly sensitive single- 
stranded probes were constructed utiliz- 
ing a cDNA which recognizes the 5' un- 
translated region and the first exon of 
p55 (obtained from G. Crabtree, Stan- 
ford, California, USA) [23]. Oligonucle- 
otides were utilized as random primers in 
the presence of DNA polymerase, and 
the probe was subsequently hybridized to 

T-cell RNA [45]. The screen was exposed 
for 48 h. 

Figure 2 depicts the results following 
16 h of culture. The first lane from the 
left represents the negative control: RNA 
extracted from CD3-non-triggered T 
cells cultured in the absence of IL2. Only 
minute amounts of p55 3.5-kb mRNA 
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Fig. 2. CD2 blockade down-regulates p55 
mRNA 



are observed, and a 1.5-kb message is 
barely detectable. The second lane repre­
sents RNA from non-triggered T cells 
cultured in the presence of 102 V jml: the 
presence of IL2 did not induce any sub­
stantial increase either of 3.5- or of 1.5-
kb p55 mRNA. The third lane represents 
RNA extracted from CD3-triggered T­
cells cultured in the presence of IL2: a 
strong p55 signal is detected. The fourth 
lane represents RNA from CD3-trig­
gered T cells cultured in the presence of 
both IL2 (102 Vjml) and p55-blocking 
antibody. The fifth lane represents RNA 
from CD3-triggered T cells, which were 
preincubated with CD2-blocking anti­
body and cultured in the presence of 
102 V jml IL2. A definitive decrease of 
1.5-kb p55 message is observed. All T cell 
samples except the CD2-blocked sample 
were preincubated with an isotype con­
trol antibody to rule out possible Fc-me­
diated effects. The last lane represents the 
size markers (A. DNA digested with Eco 
RI/Hind III). Thus, induction ofp55 sur­
face expression and accumulation of p55 
mRNA are both dependent on the pres­
ence of free CD2 determinants. 

C. Control of Hematopoietic Progenitor 
Growth by CD2 

We next assessed the effect of preincuba­
tion of CD3-triggered marrow T cells 
with CD2 antibody versus isotype con­
trol CDS antibody on IL2 inhibition of 
hematopoietic progenitors in autologous 
coculture. Progenitors were grown from 
nonadherent and T-cell depleted marrow 
mononuclear cells (termed NAB-T). In 
the presence but not in the absence of 
CD3-triggered T cells, IL2 induced a 
dose-dependent inhibition of erythropoi­
etic progenitors (Fig. 3). The abscissa 
represents the IL2 concentration and the 
ordinate the erythroid progenitor growth 
(BFV-E). CD2 blockade caused an 87% 
abrogation of IL2-induced erythropoi­
etic progenitor inhibition at 1 V /ml IL2, 
a 65% abrogation at 10 Vjml IL2, and a 
55% abrogation at 100 V/ml IL2. CD2 
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blockade had no independent effect on 
erythropoietic progenitor growth in the 
absence of IL2 or in the presence of non­
CD3-triggered T cells. IL2-induced CD3-
triggered T cell mediated inhibition of 
erythropoietic progenitors was not af­
fected by preincubation of CD3-trig­
gered T-cells with control CD5 antibody. 

In contrast to the abrogation of ery­
thropoietic inhibition, CD2 blockade 
did not abrogate IL2-induced inhibition 
of monocyte/macrophage progenitors 
(Fig. 4). Likewise, CD2 blockade did not 
affect IL2-induced inhibition of total 
myeloid progenitors (Fig. 4, insert). 

Next we assessed whether CD2 block­
ade modulates IL2-induced release of he­
matopoietic inhibitors from CD3-trig­
gered T cells. Day 3 supernatants from 
marrow CD2-non-blocked, CD3-trig­
gered T cells or CD2-blocked, CD3-trig­
gered T cells (Fig. 5) were assessed 
against nonadherent, T -depleted marrow 
target cells (NAB-T). All supernatants 
were established in the presence of IL2. 
CD3-triggered marrow T-cell superna­
tants caused a 79% inhibition of erythro­
poietic progenitors. Blockade of CD2 
caused an almost complete abrogation of 
CD3-triggered T-cell mediated inhibition 
of erythropoietic progenitors. Preincuba­
tion with isotype control antibody had 
no effect. In contrast, CD2 blockade did 
not reconstitute growth of monocytej 
macrophage progenitors inhibited by 
IL2. 

D. Regulation of Lymphokine Production 
by CD2 

CD2 blockade reduced IF-y release from 
CD3-triggered marrow T cells by 81 % at 
day 3 and by 72% at day 6 of culture 
(Fig. 6). Similar results were obtained 
with peripheral blood T cells (data not 
shown). 

We then asked whether regulation of 
IF-y release by CD2 is associated with 
regulation of IF -y gene expression. Total 
RNA was extracted from immunopuri­
fied T cells or monocyte-depleted 



Fig. 3. CD2-mediated control 
of erythropoiesis 
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Fig. 5. Differential effect 
of CD2 blockade on 
humoral progenitor in­
hibition 
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Fig. 7. CD2 blockade down-regulates IF-y 
mRNA 

mononuclear cells by the cesium chlo­
ride/guanidium isothiocyanate method 
[22]. Following gel electrophoresis of 
equal amounts, T-cell RNA was sub­
jected to a modified Northern transfer 
utilizing Nylon membranes. Probes were 
constructed from a full-length cDNA for 
IF -y [25] utilizing oligonucleotides as 
random primers in the presence of 
Klenow DNA polymerase. The IF-y 
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cDNA probes were hybridized to T-cell 
RNA. 

Figure 7 depicts the results of a repre­
sentative experiment. The first lane on 
the far left represents the negative con­
trol: RNA extracted from T cells before 
the begin of cultures. The second lane 
demonstrates that IL2 in the absence of 
high affinity IL2 receptors does not in­
duce IF -y mRNA. In contrast, IL2 in the 
presence of high-affinity IL2 receptors 
induces a strong signal for IF-y mRNA 
(third lane). The fourth lane demon­
strates that blocking of the p55 chain of 
IL2 receptor-positive T cells partially ab­
rogates the IL2-induced increase in IF-y 
mRNA. The suboptimal p55-blocking 
antibody concentration utilized in this 
study abrogates only about 50% of IL2-
induced T-cell proliferation. Of interest, 
CD2 blockade prior to triggering ofCD3 
also abrogates the IL2-induced increase 
of IF -y mRNA, as indicated in the fifth 
lane. Thus abrogation of IF -y protein re­
lease by blockade of CD2 is preceded by 
an abrogation of IF-y mRNA. This data 
suggests that CD2-mediated IF-y pro­
duction is regulated at a pretranslational 
level. 

E. Conclusion \ 
i 

We conclude that blockade of the T-cell 
CD2 receptor induces down-modulation 



of (a) T-cell p55 IL2 receptor mRNA ac­
cumulation and membrane receptor ex­
pression, (b) IL2-induced inhibition of 
erythroid but not myeloid progenitors, 
and (c) IL2-induced marrow and periph­
eral blood T-cell IF -')' protein release and 
IF -')' mRNA accumulation. 

This study indicates that T-cell ery­
thropoietic immunoregulation is not 
confined solely to antigen-restricted T­
cell activation but also involves an anti­
gen-independent pathway of T-cell acti­
vation. These results demonstrate that 
the alternate receptor not only serves to 
promote T-cell proliferation and amplifi­
cation of the immune response against 
non-self but also participates in the acti­
vation of an immunoregulatory T-cell 
program. The data also indicate that 
blockade of CD2 down-regulates the 
whole sequence of inhibitory signals in­
duced by IL2 and provided by the 
lymphokine cascade for the erythropoi­
etic progenitor cell. On the other hand, 
failure of CD2 blockade to abrogate in­
hibition of myelopoiesis indicates that 
specific regulatory T-cell programs can 
be triggered via CD3 independently of 
CD2. CD2 thus participates in hemato­
poietic differential regulation by the 
lymphokine cascade. 
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